Matrix equations arising in regulator problems

نویسندگان

  • Michael Sebek
  • Vladimír Kucera
چکیده

The two coupled linear equations C*X-Z%B = A^ C^Y+Z^A^B^ in polynomial matrices are studied in detail. These equations are crucial in the theory and design of linear optimal dynamic regulators via frequency-domain methods. The solvability of these equations is established under natural conditions. All solutions are characterized and then a specific solution is studied. Relation to other matrix equations is dis­ cussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives

In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...

متن کامل

HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE

We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.

متن کامل

Numerical Solution of Differential Riccati Equations Arising in Optimal Control for Parabolic PDEs

The numerical treatment of linear-quadratic regulator problems on finite time horizons for parabolic partial differential equations requires the solution of large-scale differential Riccati equations (DREs). Typically the coefficient matrices of the resulting DRE have a given structure (e.g. sparse, symmetric or low rank). Here we discuss numerical methods for solving DREs capable of exploiting...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1981